

Product Selection Guide

Power Management Components for Lithium-Ion Battery Powered Applications

Richtek Technology Corporation is one of the world's leading analog IC companies. The company consistently delivers inventive power management solutions that improve the performance of consumer electronics, computers, and communications equipment. Richtek adds value to end equipment by synthesizing technological innovation, uncompromised quality, and devotion to customer service. Founded in 1998, the Company is headquartered in Taiwan with additional offices in Asia, the U.S., and Europe. For more information about Richtek and its analog IC solutions, please visit the Company's Web site at www.richtek. com.

Power Management Components for Lithium-Ion Battery Powered Applications

Richtek provides a wide range of power management solutions for Li-Ion battery powered applications from battery front-end chargers and protection ICs to DC/DC converters and low quiescent LDOs.

Designing with Li-ion Batteries

Advantages of Li-ion batteries

Advantages of Li-ion batteries:

- → Light weight
- → No memory effect
- → Compared to NiMH batteries:
 - → Twice energy density typically
 - \rightarrow 6~8 times less self-discharge
- → The high cell voltage of 3.6 volts is often sufficient to power applications from a single cell

These properties make Li-lon batteries very popular in modern portable electronic applications. When designing applications with Li-lon cells, it is important to understand the battery characteristics during charging and discharging, to ensure safe application and best battery life time.

Figure 1. Battery Capacities from 200mAh to 2800A

Battery capacity

Figure 1 shows several types of Lithium cells, used in different applications, with capacities ranging from 200mAh to 2800Ah. Standard Li-Ion batteries normally use a rigid case, while Li-Polymer batteries often use the flexible foil type or pouch cell case, which reduces size and weight.

Figure 2 shows the typical discharge curves of a 2000mAh Li-Ion battery, from fully charged (4.2V) to fully discharged (3.0V) condition.

The discharge rates are expressed as a ratio of battery capacity (C). At high discharge currents, the battery capacity cannot be fully utilized and the battery voltage will drop due to battery internal resistance.

Figure 2. Typical Discharge Curves of a 2000mAh Li-Ion Battery

Single Li-Ion cell as power source

When powering your application from a single Li-Ion cell, the application input range must consider the voltage fluctuation of the battery, which for most Li-Ion batteries ranges from 4.2V fully charged down to 3.0V fully discharged.

Most applications will require some form of voltage regulation. Richtek offers a wide range of LDOs, buck, boost and buck-boost converters that can operate from the typical Li-lon battery cell voltage range and provide a stable output voltage.

General application remarks

Li-Ion batteries are sensitive to over-discharge, which is why many cells have build-in under-voltage protection circuits that switch off the cell when the cell is discharged below 2.5V. It is recommended to re-charge the battery or disconnect the battery from the system well before this battery internal protection is activated.

When Li-Ion batteries are not used for a prolonged time period, it is better to discharge them to around 40% (~3.7V) to reduce their aging effect.

Switching and Linear Regulators

Product portfolio for Li-ion battery powered applications

Most Richtek switching regulators have enhanced light load efficiency, thereby increasing the battery span.

Boost converters, such as RT9276 can be used to produce a stable USB 5V supply at varying battery voltage and provide battery monitoring function. Buck-boost regulators like RT6150A

or RT6154A can be used when the output voltage lies in between the battery max and min voltage range, and with four internal switches, they seamlessly switch over from buck to boost mode. Most low voltage buck converters will operate in 100% duty-cycle mode when battery voltage approaches the output voltage, increasing the useful battery range, such as RT8059.

Low quiescent current LDOs like RT9063 can be used to regulate the output voltage for micro power applications with minimal battery loading. The 1µA ground current ensures minimal battery drain in low power standby mode.

Boost Converters

 \rightarrow Low EMI

→ Up to 45V Vout

→ Additional detection features included

 \rightarrow Enhanced light load efficiency

Vout	I _{SW_MAX}	Product	Key Features	P/N
Up to 5V	2A	Synchronous Boost Converter with Bypass mode	→ Low BOM solution with small external components Smooth transition between boost mode and bypass mode → Less than 1µA quiescent current in shutdown mode → FC control to optimise target V _{our} → WL-CSP-16B 1.67X1.67 (BSC) package	RT4803A
Up to 5.5V	2A	Synchronous Boost Converter with current limit control	→ CMCOT lopology for fast transient response → Small output ripple when V _N is close to V _{OUT} → Adjustable 1A/2A, two level current limit threshold → PSM for enhanced light load efficiency → TSOT-23-8 package	RT4812
		Synchronous Boost Converter with LDO Controller	→ For All One-Cell, Two-Cell and Three-Cell Alkaline, NiCd, NiMH and Single-Cell Li+ batteries powered applications	RT9296
Up to 6.5V	1.6A	Synchronous Boost Converter with Voltage Detector	→ True load disconnection during shutdown to extend battery power → Output voltage is monitored by a PGOOD signal → Enhanced light load efficiency at power save mode → Low EMI → WDFN-10L 3x3 package	RT9276 Sample
Up to 16V	1.6A	PWM Asynchronous Boost Converter	→ Component size or efficiency consideration by optional 640kHz/1.2MHz operation frequency	RT9277B
0010100	1.0A	PSM Asynchronous Boost Converter	Hoternal or External programmable Soft-Start Loop responses can be optimized by external compensation	RT9277C
Up to 24V	3.0A	Asynchronous Boost Converter	→ MSOP-8, WDFN-8L 3x3 and WDFN-10L 3x3 packages	RT9297
Up to 36V	1.2A	Asynchronous Boost Converter	→ Small package and PCB footprint → 550kHz operation frequency → Internal power N-MOSFET switch → Supports up to 10 WLED strings → PWM-Analog dimming (RT4503) → 32 step pulse dimming (RT4503A) → WDFN-6L 2x2 package	RT4503/A
Up to 45V	1.0A	Asynchronous Boost Converter	→ Small package and simple external circuit design → Small package and simple external circuit design → IMHz operation frequency → Internal power N-MOSFET switch → Supports up to 10 WLEDs for backlighting and OLED power application → TSOT-23-6 and WDFN-8L 2x2 packages	RT9293

Support up to 5A peak current

- → Seamlessly switching between Buck and Boost mode
- \rightarrow Power save mode enable control
- → Support up to 5A peak current (3A max load capability)

Vout	Isw_max	Product	Key Features	P/N
		Current Mode	→ Up to 90% efficiency	
	1.6A	Buck-boost Converter	→ Fixed frequency at 1MHz	RT6150A/B
		BUCK-DOOSI CONVERTER	→ WDFN-10L 3x3 and WDFN-10L 2.5x2.5 package	
1.8V ~ 5.5V			→ Up to 96% efficiency	
1.00 ~ 0.00		Current Mode	→ Fixed frequency at 2.4MHz	
	5.0A	Buck-boost Converter	→ Can be synchronized to external clock 2.2MHz	RT6154A/B
		DUCK-DOOSI CONVENIER	to 2.6MHz for low interference solution	
			→ WDFN-14L 4x3 package	

Buck Converters

- → Low profile and small footprint
- \rightarrow Up to 95% Efficiency
- → No Schottky diode required 100% duty-cycle mode

Vout	Іолт	Product	Key Features	P/N
0.5V ~ VIN	0.4A	1.25MHz Buck Converter	→ PSM enhanced light load efficiency	RT8025
0.3V ~ VIN	0.4A	1.23IVITZ DUCK CUTVETTEI	→ SOT-23-5 / TSOT-23-5 packages	Sample
0.6V ~ VIN	0.6A	1.5MHz Buck Converter	→ PSM enhanced light load efficiency	RT8008
U.OV ~ VIN	0.0A	1.5WHZ BUCK CONVERTER	→ SOT-23-5 / TSOT-23-5 packages	Sample
			→ PWM mode / low-dropout auto switch and shutdown mode	
0.7V ~ VIN	0.6A	5A 1.5MHz Buck Converter	→ Auto discharge function	RT8099
0.7 V ~ VIN	0.0A		ightarrow 0.5mm height low profile, ideal for applications with height limitations	N10099
			→ UDFN-6L 1.6x1.6 packages	
0.6V ~ VIN	1.0A	A 1.5MHz Buck Converter	→ PSM enhanced light load efficiency	RT8016
0.0V ~ VIN	1.0A	LOWINZ DUCK CONVENCE	\rightarrow WDFN-6L 2x2 package	Sample
			ightarrow 2.25MHz high operating frequency for reducing external component size	
0.6V ~ V _{IN}	1.0A	2.25MHz Buck Converter	→ PWM operation	RT8057A
			→ TSOT-23-5 / WDFN-6SL 2x2 packages	
0.6V ~ VIN	1.0A	1.5MHz Buck Converter	→ PWM enhanced light load efficiency	RT8059
0.0V ~ VIN	I.UA	1.5IVIHZ BUCK CONVENIER	→ TSOT-23-5 package	110033
0.6V ~ VIN	1.0A	1.5MHz Buck Converter	\longrightarrow PWM mode/ low-dropout auto switch and shutdown mode	RT8080
0.0V ~ VIN	I.UA	1.5IVITIZ BUCK CUTVETLET	→ WDFN-6L 2x2 package	Sample

Dual Buck Converters

Vour	Іоит	Product	Key Features	P/N	
0.6V ~ Vℕ 1A + 1A		→ 50µA Quiescent Current per channel	RT8020		
	Dual Buck Converter	→ 1.5MHz Fixed frequency PWM operation			
			→ WDFN-12L 3x3 package	Sample	
0.8V ~ Vℕ 1A + 1.5A		1A + 1.5A Dual Buck Converter	→ Power Good output voltage monitor 1A + 1.5A Dual Buck Converter → 1.2MHz Fixed frequency PWM operation	→ Power Good output voltage monitor	RT8012A
	1A + 1.5A			→ 1.2MHz Fixed frequency PWM operation	
		→ WQFN-16L 4x4 package	Sample		

Linear Regulators

General LDO

Vin	Vout	Іоит	la	Key Features	P/N	
				→ Auto discharge function		
2.5V ~ 5.5V	~ 5.5V 1.5V ~ 5.0V 300mA	.0V 300mA 90μA → SC-70-5, SC-82, SOT-23-3, SOT-23-5, TSOT-23-3,	RT9198			
			TSOT-23-5, MSOP-8, & WDFN-6L 2x2 packages			
2.5V ~ 5.5V 1.5V ~ 5.0V				→ Вур	→ Bypass pin for ultra low noise	
	300mA	90µA	→ Auto discharge function	RT9193		
2.31 ~ 3.31	5.5V 1.5V ~ 5.0V 50011A	→ SC-70-5, SOT-23-5, TSOT-23-5,	n19195			
		MSOP-8 & WDFN-6L 2x2 packages				

Special LDO

V _{IN}	Vout	lout	la	Key Features	Action
				→ Auto discharge function:	
2.2V ~ 5.5V	1.2V ~ 3.3V	500mA	25µA	5mA discharge current of V _{OUT} when shutdown	RT9020
				→ SOT-23-5 & SC-70-5 packages	
		300mA +		→ Dual LDO regulator	
1.5V ~ 5.5V	0.9V ~ 3.5V		29µA + 29µA	→ In tiny CSP package	RT9055
	300mA	JUUIIIA	→ WL-CSP-6B 0.8x1.2 package		

Ultra Low Quiescent Current LDO

VIN	Vout	IOUT	la	Key Features	P/N
				→ T0-92, S0T-89, S0T-23-3 & S0T-23-5 packages	RT9169
2.0V ~ 6.0V	1.2V ~ 5.0V	100mA	4uA	→ 10-52, 301-05, 301-23-3 & 301-23-3 painages	Sample
2.00 ~ 0.00	1.2V ~ 5.0V	TUUIIIA	4µА	\longrightarrow With enable pin active high	RT9169H
		→ SOT-23-5 package	N19109H		
2.5V ~ 6.0V	1.2V ~ 3.3V	200mA	1µA	→ SOT-23-3 & SOT-89-3 packages	RT9063
1.2V ~ 5.5V 0.9V ~ 3.3V	9V ~ 3.3V 250mA 1μA → S0T-23-5, SC-70-5 & SC-82 packages → With EN pin	→ SOT-23-5, SC-70-5 & SC-82 packages	RT9073		
		\rightarrow With EN pin	n190/3		

Battery Management Products

Battery charging

Charging Li-Ion cells needs special care, as overcharge can lead to unsafe conditions. Most Li-Ion chargers have preconditioning - constant current - constant voltage - current cut-off –recharge functionality as shown in Figure 3.

The charger maximum regulation voltage needs to be accurately controlled. In case of deep discharge, the battery charger will first provide a low pre-charge current, to pre-condition the battery for normal charging. This low preconditioning current can also reset the battery internal under-voltage protection.

During the constant current mode, the battery is charged with a defined current. When the battery voltage comes close to the regulation voltage (4.2V or 4.35V depending on battery type), the charge current drops gradually and the charger will work in constant voltage mode. This maximum regulation voltage needs to be accurately controlled to avoid over-charging which would damage the battery and result in unsafe conditions.

The battery is considered fully charged when the battery voltage is at its regulation voltage and charging current is less than a user defined percentage of rated charge current and charging is terminated. It is not recommended to continuously trickle charge Li-lon cells, as this will reduce battery life. Most chargers will start a re-charge cycle when the battery voltage drops below a certain level (usually 0.1V ~ 0.2V below the regulation voltage).

When Li-lon batteries are not used for a prolonged time period, it is better to discharge them to around 40% (~3.7V) to reduce their aging effect.

Battery temperature during charging needs to be monitored and too high or too low battery temperature should stop the charging process. For most Li-Ion batteries, normal charging conditions can be applied within the 10° C ~ 45° C temperature range. Charging is normally cut-off when battery temperature is below 0° C or above 60° C.

Selected battery management components

Richtek has a wide range of Li-Ion chargers from linear to switching types. Linear charger topology is often used with batteries up to 1000mAh, while switching chargers are used for larger capacity batteries which can be charged with higher currents (>1A), or when using adapters with higher output voltage.

Linear Charger IC

- → Ideal for 1000mAh batteries
- \rightarrow Up to 1.2A current charger ICs
- \rightarrow Auto power path management

AC and USB Dual Input Supplies Charger ICs

Product	Key Features	P/N
	→ Automatic input supplies selection between AC and USB	
	\longrightarrow Integrated selectable 100mA and 500mA USB charge	
1.2A Linear Single Cell Li-ion Battery	current and 1A AC adapter charge current	RT9502
Charger	→ NTC sense for battery temperature monitor	Sample
	→ AC Power Good and charge status indicators	
	→ WDFN-10L 3x3 package	
	→ Cost effective solution	
	→ 28V(max) input rating for AC adapter	
1.2A Linear Single Cell Li-ion Battery Charger with	→ Power good and charge status indicators	
Input Over Voltage Protection	→ Programmable charging current	RT9526A
hiput over voltage i rotection	→ Adjustable end-of-charge(EOC) current	
	→ Thermal feedback optimizing charge rate	
	→ WDFN-8L 2x3 & SOT-23-6 package	
	→ 28V(max) input rating for AC adapter	RT9532
	→ 4.2V/2.3A factory mode	Sample
1.04 Linear Cinete Call Li ian Bettery Charges with	→ 50mA LDO to support the power of peripheral circuit	
1.2A Linear Single Cell Li-ion Battery Charger with 4.9V/50mA LDO	→ Programmable charging current	
4.59/JUIIA EDU	→ Integrated selectable 100mA and 500mA USB charge current	RT9536
	→ Power good and charge status indicators	
	→ WDFN-10L 3x2 package	

Linear charger with auto power path management

Auto Power Path feature allows the application to be run from adapter power, but it will gradually move back to battery power when the adapter input current limit is exceeded. These ICs also include many protection features like input overvoltage protection, output short protection and load disconnect function.

Product	Key Features	P/N
	→ 28V(max) input rating for AC adapter	
	→ Auto Power Path Management(APPM) with system off	
1.2A Linear Single Cell Li-ion Battery Charger with	→ Adjustable Power current limit 0.1/0.5/1.5A	RT9525
Auto Power Path Management and System Off	→ NTC sense for battery temperature monitor	Sample
	→ Power good and charge status indicators	
	→ WQFN-16L 3x3 package	
	→ 28V(max) input rating for AC adapter	
	→ Integrated 3.3V LDO for NTC sense circuitry	
1.2A I ² C Linear Single Cell Li-ion Battery Charger with	→ Auto Power Path Management(APPM)	
Auto Power Path Management and USB/AV Switch	→ USB/Audio/Video switches	RT9528
AULO FOWEI FALLI IVIALIAGENIEIIL ALIO USB/AV SWILCH	→ Termination, timer, charge current and VSYS settings through I ² C	
	→ Interrupt status, power good and charge status indicators	
	→ WQFN-28L 4x4 package	

Switching Charger

The switching charger with I²C control allows flexible selection of charging conditions and system control.

In some devices the switching MOSFETs can also be set in boost mode where a stable 5V can be supplied from battery to the VIN pin for powering USB-on-the-Go (OTG) devices.

Li-ion Switching Charger

Product	Key Features	P/N
1.5A, I ² C Switch-Mode Single Cell Li-Ion Battery	→ 4V-6V Input voltage	
Charger with USB On-The-Go (OTG)	\longrightarrow Synchronous 3MHz fixed frequency with up to 99.5% duty cycle	RT9450A
charger with 05b on-The-do (01d)	→ Ideal for 2000mAh battery capacity	
	→ 4.3V-6V Input voltage	
	→ Synchronous 1.5MHz fixed frequency with up to 95% duty cycle	
1.55A, I ² C Switch Mode Single Cell Li-ion Battery	→ State machine controls via IRQ output	DTO AFE
Charger with USB-OTG	→ Ideal for 2,000mAh battery capacity	RT9455
	→ All charge parameters can be executed via the I ² C interface	
	→ WL-CSP-16B 1.7x1.77 package	
	→ 4.3V-12V Input voltage	
	→ Synchronous 375kHz fixed frequency with up to 99.0% duty cycle	
4 04 J ² C Cuitab Mada Cingle Call Li ian Dattery	→ USB OTG mode boosts the battery voltage to 5V and	
4.0A, I ² C Switch Mode Single Cell Li-ion Battery Charger with USB-OTG	provides up to 1.6A current to the USB input	RT9451
charger with 03b-016	→ Ideal for 2,000mAh ~ 4,000mAh capacity batteries	
	→ All charge parameters can be executed via the I ² C interface	
	→ WQFN-32L 4x4 package	

Generic Switching Charger

Product	Key Features	P/N
	→ 4.5V-28V input voltage	
	→ Adjustable battery voltages from 2.5V-22V	
2A Asynchronous Switch Mode Battery Charger	→ Internal Power MOSFETs	RT9535A
ZA ASYNCHIONOUS SWIICH MODE Ballery Charger	→ 500kHz switching frequency	RI9555A
	→ NTC sense for battery temperature monitor	
	→ WQFN-16L 4x4 package	
	→ 4.5V-28V input voltage	
	→ Adjustable battery voltages from 2.5V-25V	
	→ External Power MOSFETs	
2A Asynchronous Switch Mode Battery Charger	→ Input current limit maximizes charging rate	RT9538
	→ 475kHz switching frequency	
	→ Flag indicates Charging status	
	→ WQFN-16L 4x4 package	

Battery Gauge

- → SOC based on dynamic voltage measurements and battery voltaic model
- → ±7.5mV highly accurate voltage measurement
- → In many battery applications it is important to know how much charge is left in the battery.

Conventional Coulomb Counting Method

Checking the state of charge (SOC) of Li-Ion cells is often done by coulomb counting method. These methods are accurate in theory, but suffer from accumulation errors over time. In addition, the circuit is complicated due to the current sense circuit.

Richtek Solution

An alternative way to determine the SOC is using a dynamic voltage based battery gauge, which measures the battery voltage over time, and uses the dynamic voltage measurements in combination with a battery model to calculate the relative SOC. This topology does not suffer from error accumulation, and is used in RT9420 and RT9428 battery gauge ICs.

These ICs are simply connected to the battery terminals, and monitor the battery voltage very accurately. They use an internal algorithm to calculate the relative SOC and communicate it back to the host microcontroller via I²C.

For best SOC accuracy, the application battery pack needs to be characterized during design stage, and battery specific compensation as well as temperature and charge/discharge effects can be included in the SOC calculation.

Product	Key Features	P/N
	\rightarrow ±3% State-of-Charge (SOC) error under general charging/discharging	
	→ Precise voltage measurement ±12.5mV accuracy	
	→ Accurate relative capacity(RSOC) calculated from Voltaic	
I ² C Host-side Single Cell Li-ion Battery gauge	Gauge algorithm with temperature compensation	RT9420
	→ No accumulation error on capacity calculation	
	\rightarrow No battery relearning necessary and no current sense resistor required	
	→ WDFN-8L 2x3 package	
	\rightarrow ±3% State-of-Charge (SOC) error under general charging/discharging	
	→ Precise voltage measurement ±7.5mV accuracy	
	→ Accurate relative capacity(RSOC) calculated from Voltaic	
I ² C Host-side Single Cell Li-ion Battery gauge	Gauge algorithm with temperature compensation	RT9428
	→ No accumulation error on capacity calculation	
	→ No battery relearning necessary and no current sense resistor required	
	→ WL-CSP-8B 1.6x1.52 (BSC) package	

EZPBS™ Power Bank Solution

- → EZPBS[™] highly integrated single chip solution
- → Ideal for 3,000mAh battery capacity

Product	Key Features	P/N		
	→ Easy-to-use Power Bank Solution (EZPBS [™])			
	→ Compact BOM elements with EZPBS [™] single chip			
	\longrightarrow Support charging and discharging at the same time by smart algorithm			
	→ 1.2A linear charger, asynchronous Boost with dual output load			
EZPBS™ Integrated Chip with Two Ports Output	management and a torch function support included	RT9480		
	→ Support dual USB output (Total 2.5A)			
	→ Support one sync-boost up to 2.5A			
	→ Battery state of charge(SoC) indicator by 4LEDs			
	→ WQFN-24L 4x4 package			
4.0A, I ² C Switch Mode Single Cell Li-ion Battery	ightarrow Provide up to 1.6A USB output current in OTG mode for power bank	RT9451		
Charger with USB OTG	→ WQFN-32L 4x4 package			
	→ Easy-to-use Power Bank Solution (EZPBS™)			
	ightarrow Built-in USBOUT DCP Controller, Attach/Detach Detection, Light Load Detection			
EZPBS™ Integrated Chip with Switch Charger	→ Built-in Adapter Detection with BC1.2			
	→ Charge Voltage Regulation form 3.65V to 4.6V			
	→ Charge Current Regulation form 0.7A to 2.7A	RT9481		
	\rightarrow All charge parameters can be executed via the I ² C interface			
	→ 750kHz switching frequency			
	→ Current Regulation of Load Switch for 3A			
	→ WQFN-24L 4x4 package			

Wireless Power Receiver Solution

Robust and flexible WPC Qi compliant 7.5W wireless power receiver

Product	Key Features	P/N
Wireless power receiver	→ Highly integrated with on-board 32-bit ARM-Cortex-M0 MCU	
	Very flexible with a user configurable MTP memory	
	→ Compliant with the WPC1.1 for low power up to 5W and	
	WPC1.2.0 for medium power up to 7.5W	
	→ A high efficiency fully synchronous rectifier stage and a	RT1650
	low drop 1.5A linear post regulator stage	
	→ A special headroom control system regulates the LDO headroom for optimal	
	balance between transient response and system efficiency up to 80%	
	ightarrow Supporting both adapter input and wireless power transfer input	
	→ CSP 3.0mmx3.4mm 48B (pitch=0.4mm) in 0.55mm low profile	

Find out more in the application note for the basic principles of Wireless Power Transfer, Wireless Power standards and the Qi WPC1.1 low power standard, and a practical example of the WPC1.1 5W application where a Nokia DT601 wireless power transmitter is paired with the wireless power receiver RT1650 evaluation board.

Front-end Protection IC

RT9718 is fully integrated circuit designed to provide protection to Li-ion batteries powered applications from up to 28V abnormal high input voltage.

RT9718 monitors the input voltage, battery voltage and the charging current. In case of an input over-voltage condition, RT9718 will turn off the power MOSFET within 1µs to remove the power before any damage occurs. Additionally, RT9718 can provide a voltage output without the existence of battery.

Product	Key Features	P/N			
28V Over Voltage Protection IC	→ Fully integrated protection function: programmable OCP, input OVP and battery OVP				
	→ Over voltage turn off time less than 1µs	RT9718			
	→ High accuracy protection threshold				
	→ WDFN-8L 2x2 package				

Design Support

Understanding the characteristics of Li-ion batteries and Richtek power management solutions

by Gary Zheng, Project Manager

Lithium-ion/polymer rechargeable batteries, which have been widely used today, have distinguished properties, but are very delicate and have to be used with extreme care. Improper use of Li-ion batteries will bring about catastrophic consequences....

http://www.richtek.com/Design Support/Technical Document/AN023

Designing Applications with Lithium Ion Batteries

by Roland van Roy

Li-lon batteries have several advantages when compared with other battery types: The energy density of lithiumion is typically twice that of the standard nickel-cadmium. Li-lon batteries have no memory effect, and the selfdischarge is less than half compared to nickel-cadmium. The high cell voltage of 3.6 volts is often sufficient to power applications from a single cell...

http://www.richtek.com/Design Support/Technical Document/AN025

Li-ion Battery and Gauge Introduction by Vincent Ho

available energy in the battery and usually expressed as percentages. Because the available energy change depends on different charging/discharging currents. temperatures and aging effects, the SOC could be defined more clearly as ASOC (Absolute State-Of-Charge) and RSOC (Relative State-Of-Charge) ...

DIY - How to Make a Power Bank by Yourself

SOC (State-Of-Charge) is defined as the status of How to make a safe and efficient power bank? The safety and performance of power bank is critical. It's easy to DIY a power bank, but how to select the key control IC for your power bank?...

https://www.youtube.com/watch?v=SHYyogri-04

http://www.richtek.com/Design Support/Technical Document/AN024

Add/Hide Parameter	Status	Vin (min) (V)	Vin (max) (V)	Number of Outputs	Vout (min) (V)	Vout (max) (V)	Fixed Vout Option (V)	Output Adj. Method	Accuracy (4/- %)	lout (max) (A)	lq (typ) (mA)
Total Parts: 15 Matching Parts: 15		•	•	•	•	•	•		•		
Reset sort order		••	••						••	• •	• •
Parametric Selection Controls: Clear All Selections	Active	Ī		2	C)	1.1 12 1.25 1.3 1.4 1.5 1.6 1.7	Poxed Resistor	2 2.5 3	Ī	
PT9002A Dual Low- Dropout Regulator with Detector	Active	2.5	5.5	2	1.5	3.3	1.5 2.5 2.8 3.3	Fixed	2	0.24 0.5	0.03 0.04
RT9002B Dual Low- Dropout Regulator with Detector	Active	2.5	5.5	2	1.5	3.3	1.5 2.5 2.8 3.3	Fixed	2	0.24 0.5	0.03 0.04

Parametric Search

Filter component by your requirements http://www.richtek.com/Parametric Search/Parametric Search?tree ID=27

Wireless Application : How to Make a Wireless LED Light

The video introduces wireless charging principle and explains the application of Richtek RT1650, a flexible Qi compliant wireless power receiver for power transfer up to 7 5W

https://www.youtube.com/watch?v=y4gS0xCH0xA

Richtek Technology Corporation TEL:886-3-5526789 FAX:886-3-5526611 (Headquarters)

Taipei Office TEL:886-2-89191466 FAX:886-2-89191465

Shanghai Office TEL:86-21-68798688 FAX:86-21-68798699 Shenzhen Office

Beijing Office TEL:86-755-88353955 TEL:86-10-64742610 FAX:86-755-88353947 FAX:86-10-64742615 www.richtek.com